Transport of Water from Concentrated to Dilute Solutions in Cells of Nitella
نویسنده
چکیده
The transport of water from concentrated to dilute solutions which occurs in the kidney and in a variety of living cells presents a problem of fundamental importance. If the cell acts as an osmometer we may expect to bring about such transport by creating an inwardly directed osmotic drive which is higher in one part of the cell than in other regions of the same cell. The osmotic drive is defined as the difference between internal and external osmotic pressure. Experiments with Nitella show that this expectation is justified. If water is placed at one end of the cell (A) and 0.4 M sucrose with an osmotic pressure of 11.2 atmospheres at the other end (B) water enters at A, passes along inside the cell, and escapes at B leaving behind at B the solutes which cannot pass out through the protoplasm. Hence the internal osmotic pressure becomes much higher at B than at A. When 0.4 M sucrose at B is replaced by 0.3 M sucrose with an osmotic pressure of 8.1 atmospheres we find that water enters at B, passes along inside the cell, and escapes at A so that water is transported from a concentrated to a dilute solution although the difference in osmotic pressure of the 2 solutions is more than 8 atmospheres. The solution at B thus becomes more concentrated. It is evident that if metabolism produces a higher osmotic pressure and consequently a higher inwardly directed osmotic drive in one region of the cell as compared with other parts of the same cell water may be transferred from a concentrated to a dilute solution so that the former solution becomes still more concentrated.
منابع مشابه
STUDY ON SORPTION OF SOME TOXIC AND HEAVY IONS IN DILUTE SOLUTIONS BY CLINOPTILOLITE
The deposits of clinoptilolite (CLI) in Iran after activation with sodium chloride or sodium hydroxide solution was subjected to ion exchange with some heavy and toxic cations. The results showed that the absorption for Ca2+ (7.5 ppm), Cu2+ (50 ppm), Zn2+ (40 ppm), Cd2+ (40 ppm), Pb2+ (500 ppm) and Al3+ (5 ppm) were 95.2, 96.70, 93.30,99.12, 99.2 and 90.0 percents, respectively. The noteworth...
متن کاملModeling of Nanofiltration for Concentrated Electrolyte Solutions using Linearized Transport Pore Model
In this study, linearized transport pore model (LTPM) is applied for modeling nanofiltration (NF) membrane separation process. This modeling approach is based on the modified extended Nernst-Planck equation enhanced by Debye-Huckel theory to take into account the variations of activity coefficient especially at high salt concentrations. Rejection of single-salt (NaCl) electrolyte is inve...
متن کاملRemoval of Dilute Benzene in Water through Ionic Liquid/Poly(Vinyl Chloride) Membranes by Pervaporation
This paper focuses on the effects of the addition of an ionic liquid, 1-Allyl-3-butylimidazilium bis(trifluoromethane sulfonyl)imide ([ABIM]TFSI), which has a high affinity for benzene, into the poly(vinyl chloride) (PVC) membrane on the pervaporation characteristics of the removal of benzene from aqueous solutions of dilute benzene. When aqueous solutions of 100~500 ppm benzene were permeated ...
متن کاملبرآورد انتقال بخار آب در خاکهای غیراشباع تحت تأثیر پتانسیل اسمزی
The transport process of chemical-fertilizers, radioactive materials and other solutes in soils and porous media is important to understand the environmental and economic effects of industrial, agricultural and urban waste disposal methods. In unsaturated porous media, large gradient in aqueous osmotic potential derives significant water vapor fluxes towards regions of high solute concentration...
متن کاملThe Composition of the Cell Sap of the Plant in Relation to the Absorption of Ions
1. Chemical examination of the cell sap of Nitella showed that the concentrations of all the principal inorganic elements, K, SO(4), Ca, Mg, PO(4), Cl, and Na, were very much higher than in the water in which the plants were growing. 2. Conductivity measurements and other considerations lead to the conclusion that all or nearly all of the inorganic elements present in the cell sap exist in ioni...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of General Physiology
دوره 32 شماره
صفحات -
تاریخ انتشار 1949